Horizons

Lesson I

(1) Count the children in the pictures below.

Horizons Math K Book I
(2) Circle the top of the ladder. Circle the bottom of the cup.

(3) Count to to 5 .

5

4 Trace and write I.

1:00

Lesson 2

(I) Circle the correct number.

I 2
 3

(2) Circle the first one.

Circle the last one.

Circle the middle one.

(3) Trace and write I.

(4) Count to 10 .

4 综 153 5%

THABABAA

Lesson 3

1) Circle the student on the right. Put an X on the left hat.

(2) Circle the correct number.

(3) Count the steps.

2) Circle the top step. Put an X on the bottom step.
(5) Trace and write I.

Lesson 81
(1) Write the number before.

© MM, Alpha Omega Publications, Inc.

(2) Circle the greater number in each pair.

12	6			
5	8		4	7
:---:	:---:			
13	19			

(3) Circle the smaller number of each pair.
\square
\square $19 \quad 12$
$6 \quad 9$
$12 \quad 18$
163

4 Add.

Lesson 82
(I) Write the number after.

54
58
55
50
53
52
57
(2) Write the number before.

(3) Add.

(c) MM, Alpha Omega Publications, Inc.

4) Circle the smaller number in each pair.

Forizons

NUMBERS

(1) Trace the numbers.

(2) Write numbers 0-9.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(3) Write in the missing numbers on the number line.

$$
\begin{aligned}
& \uparrow|1| 1|1| 1 \mid \\
& \underline{0}-\underline{2}-\underline{5}-7-\underline{9} \\
& ---3--6-8
\end{aligned}
$$

(4) Connect the dots.

2 (two)

NUMBER ORDER - ORDINAL NUMBERS

(1) We use numbers to put things in order. Use ordinal numbers to label the stages in the life cycle of a frog beginning with the eggs.

(2) Look at the numbers on the sailboats.

These numbers show order. Count the sailboats.

(3) Put an X on the first (1) sailboat.

Circle the fifth (5) sailboat.
3 (three)
(4) Count the balls. Put an X on the third (3) ball. Circle the eighth (8) ball.

(5) Count the fish. Put an X on the second (2) fish.

(6) Write the missing numbers.

$0 \ldots 3 \ldots 7$
 1
 6

(7) Write the numbers in order.
85
7
6

$$
4635
$$

SETS

(1) Write the numbers 0-9.

(2) Draw a set of 5 X's.
 Draw a set of 10 circles.

(3) Write the missing numbers by 1 's.
1
8

- 10
4
6
7
$-$
12
13
15
工
-

20
(4) Write the missing numbers on the number line.

5 (five)
(5) Count the objects in each set. Write the number in the box.

(6) Write the missing numbers by 1 's.
$22 \quad 23$
29
31

- - 34

36

45
48

PLACE VALUE - ONE HUNDREDS

(1) The number 135 has three places. The 1 is in the hundreds' place. The 3 is in the tens' place. The 5 is in the ones' place.

one group
of hundreds
 three groups five of tens ones
(2) Count the hundreds. Count the tens. Count the ones. Write the numbers.

hundreds \qquad

hundreds

___ hundreds

hundreds

$\begin{array}{ll}\forall B & \\ \# B & \square \square \\ \# B & \square \square \\ \# G & \square \square \\ \square & \square \square\end{array}$
___ tens
___ ones $=$
tens \qquad ones = \qquad
(3) Circle the correct answer.

$\begin{array}{lllllllllllllll}\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4}\end{array}$

$\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4}$
$\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4}$
$\frac{1}{2} \frac{1}{3} \frac{1}{4}$
$\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4}$
(4) Write the answers.

How many inches is the longest side?
\qquad inches
How many inches is the shortest side?
\qquad inches
How many inches is the third side?
___ inches
What is the distance around the triangle? \qquad inches
(5) Write the subtraction facts.

$$
6+1=7 \quad 2+6=8 \quad 4+3=7
$$

$7+2=9$
$2+5=7$
$1+7=8$
(6) Subtract.

> 10 -23 $-\quad 4$ $\begin{array}{r}14 \\ -6\end{array}$

$$
\begin{array}{r}
1215 \\
-\quad 5 \quad-7 \\
\hline
\end{array}
$$

(1) Color the circle red.

Color the triangle blue.
Color the square yellow.
Color the rectangle green.

(2) Write the number.
twenty-six
fifty-two \qquad
seventy-four \qquad
thirteen
ninety-five
thirty-three
eighty-seven
sixty-nine
\qquad
\qquad
\qquad
\qquad
(3) Write the numbers.

hundreds

hundreds

___ tens

___ tens

\qquad ones =
(4) Alvin had three cookies for lunch. He gave one to Lewis. How many cookies did Alvin have left?
\qquad
Norma had 7 pencils. She broke the lead on 3. How many pencils did Norma have left that she could use?

$$
\sim^{-} \ldots
$$

Horizons

(1) Count each set. Write the number.

(2) Write the missing numbers.

0									
				14					
		22							
							37		
									49

(3) Write the numbers that come before and after.

(4) Write the letters on the blanks.

fourth \quad C fifth $\quad \bar{O}$ eleventh \bar{K}
first W eighth \bar{B}

Across

1. The number before 35
2. $68-1=$
3. The number after 13
4. $82+1=$
5. The number after 49
6. $73-1=$
7. The number before 61
8. $24+1=$

Down

1. $38+1=$
2. The number after 61
3. $11-1=$
4. $90-1=$

(6) Circle the larger numbers.

(1) Connect the dots.

(2) Circle the smaller number.

(3) Write the missing numbers.

50									
			63						
							77		
					85				
									99

(4) Write the numbers that come before and after.

(5) Match the ordinal numbers.

first	3rd	sixth
second	5th	seventh
third	2nd	eighth
fourth	1st	10th
fifth	4th	ninth
tenth	8th	

(6) Count each set. Write the number.

(1) Make a tally mark for each object.

(2) Write the number that is one more.

60	39	24	85
$18-$	$6-$	$77-$	96
$47-$	$72-$	$51-$	33

(3) Write the number that is one less.

(4) Write the letters on the blanks.

seventeenth fourth twelfth first	I
fourteenth fou eighth	B

ninth	
fifth	
eleventh	
second	
eighteenth	O
fifteenth	E

(5) Circle 17 stars.

Circle 12 octagons.
Circle 18 cones.

(6) Write the numbers in order.

$$
\begin{array}{lllllllll}
23 & 25 & 28 & 21 & 27 & 24 & 29 & 22 & 26
\end{array}
$$

(1) Circle the least number.

(2) Write as a number sentence.

Sixty-five and twenty-eight equals ninety-three. \qquad
Ten added to seventy-four equals eighty-four. \qquad
Forty-three plus seventeen equals sixty. \qquad
The sum of thirty-one and fifty-eight is eighty-nine.
Twenty-five increased by thirteen is thirty-eight.
(3) Find the sum and check.

374	102	360	326	139	342	111
182	584	286	471	329	282	539
+211	+192	+312	+192	+220	+121	+133

450	431	332	122	212	471	172
173	215	130	228	236	253	443
+122	+191	+291	+349	+438	+151	+150

(4) Put an X on the numbers out of sequence.

236	238	240	241	244	246	248
249	252	253	256	258	260	261
264	266	268	271	272	275	276

(5) Subtract to find the difference. Check your answers.

9,780	4,574	6,392	7,826	6,982	9,873
$-9,175$	$-3,326$	$-2,183$	$-3,018$	$-1,765$	$-6,545$

8,931	6,941	8,931	7,690	8,497	4,651
$-4,225$	$-3,512$	$-2,407$	$-5,439$	$-3,019$	$-2,529$

(6) Write the numbers.

(1) Write the fraction that shows what part is shaded.

(2) Multiply to find the product.

X	2	4	7	3	0	6	8	9	5	10	1
5											

X	7	1	4	6	3	9	0	10	8	2	5
2											

(3) Find the sum and check.

171	184	417	228	216	241	185
259	355	296	277	395	386	296
+136	+316	+182	+270	+143	+109	+404

(4) Write the value.

(5) Put an X on the numbers out of sequence.

603	606	609	614	615	618	620
624	627	631	633	635	639	642
645	646	651	654	657	662	663

(6) Connect the dots counting by 2's.

Forizons

(1) Write the numbers in standard form. three thousand, eight hundred sixty-one
\qquad = \qquad thousands + \qquad hundreds + \qquad tens + \qquad ones five thousand, six hundred eight
\qquad = \qquad thousands + \qquad hundreds + __ tens + \qquad ones
nine thousand, four hundred twenty-seven
\qquad = \qquad thousands + \qquad hundreds + __ tens + \qquad ones two thousand, thirty-five
\qquad = \qquad thousands + \qquad hundreds + \qquad tens + \qquad ones six thousand, five hundred forty-nine
\qquad = \qquad thousands + \qquad hundreds + \qquad tens + \qquad ones
(2) Write the addition facts having a sum of:

(3) Write the correct letters in the blanks.

5 th	O
19th	R
8 th	B
15th	S

16th
2 nd
14th

7 th | L |
| :--- |

10th	
3 rd	
12 th	

(4) Find the sum.

$\begin{array}{r} 13 \\ +\quad 27 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ +38 \\ \hline \end{array}$	$\begin{array}{r} 36 \\ +45 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ +\quad 18 \\ \hline \end{array}$	$\begin{array}{r} 27 \\ +36 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ +27 \\ \hline \end{array}$	$\begin{array}{r} 39 \\ +58 \\ \hline \end{array}$	$\begin{array}{r} 29 \\ +23 \\ \hline \end{array}$
42	14	36	29	35	57	68	79
+48	+57	+28	+66	+36	+18	+25	+12

(5) Connect the dots.

(6) Find the difference.

79	53	68	94	95	37	86	73
-69	-51	-20	-30	-84	-27	-25	-43
48	65	94	56	82	69	27	87
-21	-12	-61	-34	-30	-37	-15	-62

(1) Match the numbers.

23rd	fortieth	483	three hundred twenty-seven
86th	seventy-fifth	609	six hundred ninety
40th	twenty-third	572	five hundred seventy-two
57th	eighty-sixth	327	four hundred eighty-three
31st	ninety-second	690	eight hundred thirty-eight
75th	fifty-seventh	838	six hundred nine
92nd	thirty-first	250	two hundred fifty

(2) Write the numbers in expanded and standard form.

four thousand, three hundred twenty-five
4 thousands +3 hundreds +2 tens +5 ones = \qquad $+$ \qquad ${ }^{+}{ }^{+}{ }^{+}=$ \qquad
seven thousand, two hundred six
7 thousands +2 hundreds +0 tens +6 ones $=$ \qquad $+$ \qquad $+{ }_{+}{ }^{+}=$ \qquad
one thousand, eight hundred forty-three
1 thousand +8 hundreds +4 tens +3 ones $=$ \qquad $+$ \qquad $=$ \qquad
eight thousand, seventy-one
8 thousands +0 hundreds +7 tens +1 one $=$ \qquad $+$ \qquad
\qquad
five thousand, six hundred ninety-two
5 thousands +6 hundreds +9 tens +2 ones $=$ \qquad $+$ \qquad ${ }^{+}{ }^{+}{ }^{+}=$ \qquad
(3) Find the sum.

| 84 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| +90 | | 98 |
| ---: |
| +11 |

(4) Find the difference.
89

- 85

76
-36

78
-56

58
$-\quad 17$

63
$-\quad 22$

94
$-\quad 24$

18
$-\quad 15$

96	89	47	99	74	82	69
-73	-30	-31	-49	-61	-42	-41

(5) Write the subtraction facts having a difference of:

(6)

Across

1. $74+83$
2. 6 hundreds +4 tens +7 ones
3. 6 tens
4. 70-50
5. three hundred seven
6. 65-10
7. 2 tens +4 ones
8. $98+46$
9. eight hundred fifty-one

Down

1. 59-43
2. 7 tens
3. $32+22$
4. $32+$
18
5. 4 tens +2 ones
6. 5 hundreds
7. twenty-five
8. 5 tens +1 one
9. 87-46

(1) Circle the closer ten.

29	20	30	38	30	40			
32	30	40	92	90	100			
86	80	90	63	60	70			
51	50	60	84	80	90			
97	90	100	77	70	80			
48	40	50	59	50	60			
73	70	80	41	40	50			
14	10	20	16	10	20			

(2) Write the correct time.

During the morning the time is (А.М. or P.М.)?
During the afternoon the time is (А.М. or P.M.)?
\qquad
\qquad
(3) Find the sum.

| 81 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| +49 | | 67 |
| ---: |
| +89 |

(4) Write the numbers in standard form.
two thousand, three hundred fifty-eight
2 thousands +3 hundreds +5 tens +8 ones $=$ \qquad
six thousand, seven hundred four
6 thousands +7 hundreds +0 tens +4 ones $=$ \qquad
nine thousand, one hundred ninety
9 thousands +1 hundred +9 tens +0 ones $=$ \qquad
five thousand, eight hundred twenty-seven
5 thousands +8 hundreds +2 tens +7 ones $=$ \qquad
three thousand, sixty-nine
3 thousands +0 hundreds +6 tens +9 ones $=$ \qquad

5 Match the numbers.

484	four hundred eighty	408	four hundred forty-four
480	eight hundred forty	880	eight hundred forty-eight
804	eight hundred eighty-four	440	four hundred eight
844	four hundred eighty-four	444	eight hundred eighty-eight
840	four hundred four	848	eight hundred eighty
448	eight hundred forty-four	488	eight hundred eight
404	eight hundred four	888	four hundred eighty-eight
884	four hundred forty-eight	808	four hundred forty

(6) Find the difference.

87	49						
-17	-48	-14	87	37	28	59	95
	-	-54	-12	-22	-43	-42	
73	86	76	94	58	19	69	98
-13	-85	-36	-53	-17	-16	-12	-10

(1) Round the numbers to the nearest 100.

(2) Find the difference and check.

5,612	4,361	7,250	8,504	9,830	6,945	6,527
$-5,174$	$-\quad 284$	$-6,178$	$-7,165$	$-4,564$	$-1,378$	$-4,189$

(3) Write the Arabic numbers.

DCLXXXIV \qquad CDXCVIII
DCCLVII
DLXXII
CCCXXXV \qquad
DCIII \qquad

(4) Write solid or plane.

(5) Find the product.

314
$\times \quad 5$
$\times \quad 2$

(6) Write < or >.

43,872	43,876	56,247	56,207	14,728	12,728
61,590	61,509	30,819	36,819	27,106	27,016
85,934	85,943	79,365	79,361	94,562	93,652

(7) Write + ,,$- x$, or \div.

addends	product	subtrahend
minuend		quotient
difference	divisor	multiplier

(1) Write solid or plane.

(2) Write $=$ or \neq.

In the fraction $\frac{3}{5}$, the denominator is a \qquad and the numerator is a \qquad .
(3) Find the product.

408
$\times \quad 316$
$\times \quad 4$

(4) Round the numbers to the nearest 100.

(5) Write < or >.

63,842	63,482	87,415	88,415	45,183	45,138
57,901	57,906	32,069	32,036	72,056	72,506

(6) Find the difference.

7,901	9,821	5,620	7,535	7,374	5,642	4,956
$-6,813$	$-6,547$	$-3,182$	$-7,169$	$-4,289$	$-2,387$	$-1,268$

(7) If a book was copyrighted in MCMLXIX, what year was that?

If the big hand on the clock is at VI and the little hand is between IV and V , what time is it?

The students did the following number of push-ups on track and field day: Sam 26, Ross 44, Abel 107, Betty 79, and Cody 9. Together they did how many push-ups?

Elizabeth's teacher told her to take six thousand, seven hundred thirtyfour away from nine thousand, nine hundred seventy-six. What should be her answer?

(1) Solve the equations.

$\begin{aligned} \frac{1}{\frac{4}{4} \times \mathrm{n}} & =\frac{24}{4} \\ \mathrm{n} & =\frac{24}{4} \\ \mathrm{n} & =6 \end{aligned}$	$7 \times \mathrm{n}=56$	$6 \times \mathrm{n}=48$	$8 \times n=32$
$5 \times \mathrm{n}=15$	$9 \times \mathrm{n}=18$	$3 \times \mathrm{n}=18$	$6 \times \mathrm{n}=30$

(2) Round the numbers to the nearest 100.

(3) Find the difference and check.

9,670	8,956	5,732	7,304	4,821	8,615	5,723
$-9,493$	$-5,167$	$-4,575$	$-1,176$	$-2,398$	$-7,289$	$-2,466$

(4) Find the sum.

22	71	39	54	15	34	10	75
59	43	29	13	24	62	51	24
56	58	92	35	40	45	48	11
77	92	83	93	6	70	31	52
+83	+38	+71	+56	+56	+47	+79	+33

(5) Write $=$ or \neq. Write the terms.

The \qquad tells how many parts are used. The \qquad tells into how many parts the whole is divided.
(6) Ivan worked 8 hours a day for 24 days in the month. How many hours did he work in the month?

Jose earned \$ 12.46 the first week throwing papers. On the second week he earned \$ 9.52 and the third week $\$ 14.78$. How much did he earn in the three weeks?

Norma had to be at play practice at 8:00 A.m. They were to practice for three hours. What time was play practice over? \qquad She then went to a friends house to play for two hours. What time should she be home? \qquad

Eorizons

Addition Terms

Addition can be shown in two ways:

4	Addend	4		7
+7	Addend	(Addend)	11 11 Sum	
Herizontal Form				

1 Find each sum and label.
a. 41 \qquad
+32 \qquad
b. 75
$+23$ \qquad

- \qquad
c. $16+41=$ \qquad
\qquad \longrightarrow

2 Write the value of each set.
a.

d. \qquad

b. \qquad

c. \qquad

e. \qquad

3 Write the largest number.
36907
71192
29317
92979
48103

3 Work the division problems and write your answers using written form.

ACROSS

1. $9 \longdiv { 5 4 }$
2. $2 \longdiv { 3 2 }$
3. $3 \longdiv { 1 2 }$
4. $9 \longdiv { 7 2 }$
5. $5 \longdiv { 1 5 }$
6. $9 \longdiv { 8 1 }$
7. $8 \longdiv { 8 }$

4 Write the fractional parts that are shaded. Find the sum.

\qquad $+$ \qquad $=$

\qquad $+$ \qquad $=$

\qquad $+$ \qquad $=$ \qquad $+$ \qquad $=$

5 Find the Products

x	5	6
4		
5		
6		

\mathbf{x}	3	4
4		
5		
6		

x	7	8
4		
5		
6		

6 Write $<$, $>$ or $=$

54,499	54,944	12,000	12 thousand	912 billion	912,000,000
34,270	34,720	124,000	124,001	43 million	43,000,000
6,789	6,800	537 billi	537,000,000	14 thousand	1,014

7 Dawn is in Mr. Carter's fourth grade class. She read the problems below and found a solution. Look at the question and Dawn's answer. If you think she understood the question, write yes beside her answer. If you think she did not understand the question, write no beside her answer.

Sam had 18 donuts to bring to the carnival. Paul had two dozen donuts to bring to the carnival. When they combined their donuts, how many did they have? $18+24=42$ donuts \qquad

Christi, Julie, and Pauline took a ride on the Magic Skyrocket. The tickets were $\$ 2.50$ a piece. If the girls gave the cashier $\$ 10.00$, how much was their change?
$\$ 2.50+\$ 2.50+\$ 2.50=\$ 7.50$ \qquad

Steve was great at ring toss. He threw a total of 57 rings. 21 of his rings made it around a pop bottle. How many of his tosses did not make it around a pop bottle?
$57-21=36$ \qquad

Cotton candy costs $\$ 1.00$, popcorn costs $\$ 0.75$, soft drinks are $\$ 1.00$, hot dogs are $\$ 1.75$, and chips are $\$ 0.75$. If Pam has $\$ 5.00$, can she buy one of everything?
$\$ 1.00+\$ 0.75+\$ 1.00+\$ 1.75+\$ 0.75=\$ 5.25$
$\$ 5.00$ - \$5.25 = you can not subtract \$5.25 from \$5.00.
She does not have enough. \qquad

Five of the boys wanted to go down the waterslide. If the cost of the ride was $\$ 2.00$ per person, how much would it cost the boys to ride?
$\$ 5.00-\$ 2.00=\$ 3.00$ \qquad

Division Properties

Apply the division properties from the last lesson to understand basic division facts.

Division of a
Number by Itself
Any number divided by itself is 1 .

Problems like this are easy: $7 \div 7=1$.

Division by Zero

We can not divide by zero, but we can divide zero by a number.

1 Solve the problems by applying the division properties.
$42 \div 7=$ \qquad , so \qquad $x 7=42$
$48 \div 8=$ \qquad , so \qquad $x 8=48$
$15 \div 3=$ \qquad , so \qquad $x 3=15$
$30 \div 6=$ \qquad , so \qquad $x 6=30$
$8 \div 8=$ \qquad $8 \div 1=$ \qquad $12 \div 12=$ \qquad $12 \div 1=$ \qquad $0 \div 4=$ \qquad
$5 \div 5=$ \qquad $5 \div 1=$ \qquad
$10 \div 10=$ \qquad $10 \div 1=$ \qquad $0 \div 9=$ \qquad
What division problem is impossible? \qquad
2 Find the quotient. Label the first problem using the terms divisor, dividend, and quotient.
$6 \longdiv { 1 8 }$
$9 \longdiv { 8 1 }$
$9 \longdiv { 9 }$
7 $\longdiv { 2 1 }$
$1 \longdiv { 2 }$
$3 \longdiv { 1 5 }$
$2 \longdiv { 1 8 }$
$3 \longdiv { 2 7 }$
$9 \longdiv { 3 6 }$
$8 \longdiv { 7 2 }$
$6 \longdiv { 5 4 }$
$8 \longdiv { 2 4 }$
$2 \longdiv { 2 }$
$9 \longdiv { 4 5 }$
$9 \longdiv { 6 3 }$

Problem Solving

Real life involves having to use money in everyday situations like ordering food at a restaurant. Data is gathered from a menu and then used to calculate the amount of money you are spending.

Sally and four friends are having the lunch special. How much money will the 5 meals cost?
$\$ 3.95 \quad$ (Price of special)
x 5 (Number of meals ordered)
$\$ 19.75$ (Price of meals)

Olivia's Decorating Den offered a combination special. You could purchase a gallon of paint in either white, beige, blue, or green, and 3 rolls of coordinating wallpaper-striped or flowered-for $\$ 35.00$. How many different paint and wallpaper combinations can be made?

2. Count the number of letters in each word in the picture below. If the number of letters in the word is a prime number, write P for PRIME on the answer line provided below the word. If the number of letters in the word is composite, write C for COMPOSITE on the answer line provided below the word.

Telling Time

Sandra was assigned to make a class presentation on telling time. She made a poster to show how we measure time using a day and smaller units.

A given time may be read and stated in several different ways. The following are examples of times which may be stated different ways.

Read:
7:15
Seven fifteen or 15 minutes after 7 or a quarter after 7

3:45
Three forty-five or 45 minutes after 3 or

9:24
Nine twenty-four or 24 minutes after 9 a quarter until 4

The reason time is often stated as "a quarter after," "a quarter before," or "half after" is because the clock face is a circle and minutes may be viewed as fractions of an hour. When the clock face is viewed as a fractional representation of minutes, 15 after is a quarter of the whole clock. 30 minutes is viewed as half of the clock face; half of an hour. Look at the diagram below.

12:15 or a quarter after 12

2:30 or half past 2

1 Write in the correct time.

2 Solve.
$3+n=5+(2 \times 6)$
$7+n=8+(3 \times 1)$

$$
n+4=12-(3 \times 2)
$$

3 Write in expanded form.
Three hundred thousand, forty-five =

Twenty-four million =

Sixty-five =

Ninety-eight hundred thousand =

Two billion =

4 Find the difference.
$92-5=$
$81-7=$
$36-4=$
$90-19=$
$76-12=$
$27-22=$

5 Multiply.

$$
\begin{array}{r}
763 \\
481 \\
\times \quad 2371 \\
\times \quad 15 \\
\hline
\end{array}
$$

6 Fill in the blanks.

A \qquad is 100 years.
\qquad means Before Christ.

A \qquad is 10 years.
\qquad means anno Domini or in the year of our Lord.

A \qquad is 1,000 years.

WORD BANK:
millennium
century

Telling Time

Kimberly went to bed at 12:45 after watching the late movie. Samantha ate an enchilada and taco dinner at 12:45.

12:45 Р.м.

How do we know what time of day these events occurred? Did Kimberly go to bed at 12:45 in the afternoon? Did Samantha eat at 12:45 at night? Probably not, but how could we know for sure? It is simple. Times from 12:00 midnight up to noon are labeled A.m. Times from 12:00 noon up to midnight are labeled p.m.

For example, we have labeled each of the following events and times as either A.M. or P.M.

Breakfast
7:15 A.м.

Dinner
6:30 P.M.

Sunday School
9:30 A.M.

Skydiving Lessons 4:30 p.м.

1 Write the time and label A.M. or P.M.

Starting
School

Going to Bed

Ending the school day

Time: \qquad

Eating an early lunch

11:27

Time: \qquad Time: \qquad Time: \qquad

2 Match.

10 years
100 years
B.C.
A.D.

1,000 years
before Christ
millennium
decade
anno Domini
century

3 Order from largest to smallest.

4 Find the difference.
$\begin{array}{r}754 \\ -291 \\ -\quad 1297 \\ \hline\end{array}$

5 Solve.
$5 \times n=45$
$9 \times n=36$
$2 \times n=18$
$4 \times n=32$

6 Solve.
$9 \longdiv { 5 6 }$
7) 4
$6 \longdiv { 9 }$
$3 \longdiv { 2 0 }$
$7 \longdiv { 4 6 }$

Century

What is a century? A century is a time period of 100 years. We now live in the 21st Century. Look at the chart below. This chart shows all the dates and centuries up to the present.

1	A.D.	to	100 A.D.	-	1st century
101	A.D.	to	200 A.D.	-	2nd century
201	A.D.	to	300 A.D.	-	3rd century
301	A.D.	to	400 A.D.	-	4th century
401	A.D.	to	500 A.D.	-	5th century
501	A.D.	to	600 A.D.	-	6th century
1601	A.D.	to	1700 A.D.	-	17th century
1701	A.D.	to	1800 A.D.	-	18th century
1801	A.D.	to	1900 A.D.	-	19th century
1901	A.D.	to	2000 A.D.	-	20th century
2001	A.D.	to	2100 A.D.	-	21st century

If you look closely you will notice that the beginning digits of the year, 1996, and the beginning digits of the century, 20th century are one number off. This is an easy way to remember what century a year is in. Look at the first two digits of the year and then add one. For example: 1898 is in the 19th century, 1768 is in the 18th century, and 2012 is in the 21st century.

1 Tell the century for each year.

1594	1437
1889	1776
2001	987

Forizons

1. $7+(1+4)=(7+1)+4$
a. Order Property of Addition
2. $3+5=8$ so $5+3=8$
b. Grouping Property of Addition
3. $3+0=3$
c. Zero Property of Addition

3 Add. Be sure and write the fractions in lowest terms. Connect the answers in order of the problems to uncover the hidden picture.

1. $\frac{1}{7}+\frac{2}{7}=\square$
2. $\frac{2}{9}+\frac{3}{9}=$ \qquad
3. $\frac{2}{17}+\frac{7}{17}=$ \qquad
4. $\frac{1}{10}+\frac{3}{10}=$ \qquad 3. $\frac{2}{8}+\frac{4}{8}=$ \qquad
5. $\frac{4}{5}+\frac{1}{5}=$ \qquad
6. $\frac{3}{15}+\frac{2}{15}=$
$\frac{8}{9} \cdot \frac{3}{7}$
7. $\frac{3}{7}+\frac{1}{7}=$ \qquad 11. $\frac{6}{9}+\frac{2}{9}=$ \qquad
$\frac{1}{3}$

- $\frac{4}{7}$
- $\frac{2}{5}$
- $\frac{3}{4}$
$-\frac{2}{3} \quad 1 \quad \frac{5}{9}$
$\cdot \frac{7}{9}$

Those who are wise will shine like the brightness of the heavens, and those who lead many to righteousness, like the stars for ever and ever. Daniel 12:3

4 Define using the following words: parallel, intersecting, perpendicular.

5 Arrange the numbers in the spaces below to make the largest number possible.
1, 7, 3, 0, 5, 7
$3,3,5,8,1,0,2$
7, 9, 7, 9, 2, 1

6 Add each fraction and write it in lowest terms. Find the letter in the roof that matches the sum, and write it in the box in the window. The message will complete the statement; A house \qquad

Matthew 7:24-25: Everyone who listens to these words of mine and acts on them will be like a wise man who \qquad his house \qquad . The rain fell, the floods came, and the winds flew and buffeted the house. But it did not collapse; it had been set solidly on rock.

(2) Match each standard number with the written or expanded form of that number.

296	Two thousand, nine hundred sixty
2,096	Two hundred ninety-six
296,000	$200,000+900+60$
2,960	Two thousand, ninety-six
200,960	$200,000+90,000+6,000$

(3) Find each number written in standard form in the puzzle below.

Five hundred thousand, forty-five
One billion, six hundred thousand
Eleven million, four hundred seventy-five thousand, nine hundred Two thousand fourteen

1	0	0	0	6	0	0	0	0	0
1	5	3	1	0	5	7	9	2	4
4	7	6	3	8	4	5	1	3	1
7	4	0	4	8	9	9	1	4	0
5	0	0	0	4	5	0	4	7	9
9	3	5	9	8	2	1	8	2	5
0	4	0	0	7	2	5	5	3	7
0	6	5	9	8	0	0	9	6	8
9	8	8	1	8	3	2	0	1	4
6	5	2	3	5	6	1	0	4	9

(5) Solve.

6 Find the missing addends.

$?$	10	$?$	98	$?$	50
+8	$+?$	+45	$+?$	+5	$+?$
13	25	68	118	18	95

7 Find the products.
3^{2}
4^{2}
5^{2}
$2^{3} \quad 10^{2}$

Beside each number write prime or composite. If the number is composite, find the prime factors. The first one has been done for you.

1.	12	composite	2, 2, 3
2.	3		
3.	9		
4.	25		
5.	24		
6.	17		
7.	40		
8.	55		

4 Find the missing addends.

5 Find the sum.

13,489	23,709	15,290	39,131
$+12,603$	$+35,931$	$+48,981$	$+3,084$

5 Find the product.
542
$\times \quad 5$

903
$\times \quad 8$

$\begin{array}{r}284 \\ \times \quad 9 \\ \hline\end{array}$
731
732
$\begin{array}{r}2 \\ \times \quad \\ \hline\end{array}$
$\begin{array}{r}732 \\ \times \quad 3 \\ \hline\end{array}$

6 Answer the questions about the number below.

365,891,027,000

1. Write the number in words. \qquad
\qquad
2. The seven is in the \qquad place.
3. What number is in the ten billions' place? \qquad
4. What number is in the hundred millions' place? \qquad
5. What number is in the ten thousands' place? \qquad

Symmetry

Fold a piece of paper in half.

Cut out a design. Do not cut down the fold line.

Unfold the cut out design.

You have just made a symmetric figure. A symmetric figure can be folded so that both sides match. The fold line is called the line of symmetry. Some shapes have several lines of symmetry, and some shapes have no lines of symmetry.

two lines of symmetry

one line of symmetry

no lines of symmetry

1 Draw the lines of symmetry for each object.

Many companies use one or more lines of symmetry when creating their logos. Create a logo for yourself using at least one line of symmetry. You might want to use letters in your name or draw a design of an activity that you enjoy.

2 There are examples of parallel, perpendicular, and intersecting lines all around you. Below each description, write three examples that you can find in your room.

Parallel

Perpendicular
Intersecting
\qquad
\qquad
\qquad
\qquad

3 The table below is missing information. Fill in the missing facts. If you need help, refer to Lesson 71.

Geometry Terms	Geometry in Pictures	Geometry in Symbols	Geometry in words
Point	K	K	
Line	$\stackrel{\bullet-}{+}$		Line DE
	$\stackrel{+}{\square}$	ST	Line Segment ST
Ray		$\overrightarrow{X Y}$	Ray XY Always name the endpoint first.
Plane	R	Plane R	

4 Match.
B.C.
A.D.
decade
century
millennium

1,000 years
Before Christ 100 years
Anno Domini (in the year of our Lord) 10 years

5 Divide.
$8 \longdiv { 5 9 }$
$6 \longdiv { 3 8 }$
$9 \longdiv { 8 8 }$
$4 \longdiv { 3 9 }$
$5 \longdiv { 1 7 }$

6 In the puzzle there are at least 20 numbers that when rounded become 100. Can you find them all? You may find numbers horizontally and vertically, but not diagonally. Circle the numbers in the puzzle and write them on the lines provided. Some numbers may appear more than once.

1	2	1	9	9
3	8	4	2	1
8	7	9	0	3
1	1	1	9	3
0	0	0	8	7

7 Write subtraction problems with the answers given. There are many possible answers. The first one has been done for you.

$$
\begin{array}{rllll}
10 \\
-\frac{2}{8} & -\frac{2}{7} & -\frac{}{3} & -\frac{}{4} & -\frac{}{1}
\end{array}
$$

Congruent Segments

Congruent Segments, Angles, and Polygons

Two segments that have the same length are congruent to each other. The symbol to express congruency is \cong.

```
A\longrightarrowB
C\longrightarrowD
```

The line segment $A B$ is congruent to line segment $C D$. We write $\overline{A B} \cong \overline{C D}$.
Two angles that have the same measure are congruent to each other.

Angle $A B C$ is congruent to angle $X Y Z$. We write: $\angle A B C \cong \angle X Y Z$
Two polygons that have congruent matching angles and congruent matching sides are congruent to each other.

Triangle KLM is congruent to triangle UVW. We write: $\triangle K L M \cong \triangle U V W$

1 Look at the line segments, angles, and polygons in the data bank and identify the ones that are congruent. You may need a ruler or protractor to help.

Name one pair of congruent line segments.
Name one pair of congruent angles.
Name two pair of congruent polygons.

2 Is the dotted line a line of symmetry? Write yes or no.

How many lines of symmetry does each letter have?
A
B
C
E
H
X
\qquad
 -_ -

3 Write obtuse, acute or right angle.

4 Match.

A. century
__ 48 months
B. 2 years
_ 120 seconds
C. 1 year
__ 104 weeks
D. decade
_- 100 years
_ 365 days
E. 180 minutes
F. 2 minutes
\qquad 10 years
G. 4 years

5. Candy bars are 75 cents a piece. If Brian has $\$ 6.75$, how many candy bars can he buy?

2. Mrs. Taylor bought 25 pencils for $\$ 1.25$. How much did the pencils cost a piece?

3. Trixie, Pauline, and Becky earned $\$ 22.50$ for babysitting. If they split the amount three ways, how much will each girl receive?

4. Brookwood Elementary had a talent show put on by their teachers. The students came to see their teachers by the hundreds. The talent show earned the school $\$ 570.00$. If they wanted to divide their profits equally between three charities, how much would each charity receive?

6 Use the dart board to answer the questions below.

1. Steve threw three darts. Each dart hit a different ring for a total of 22 points. Where did each dart land?
2. Andrew threw three darts and they all landed on the same ring for a total of 21 points. Where did the darts land?
3. Peter had the highest score of all three boys. He had 23 points. Where did his three darts land?
4. What is the lowest score possible for three darts?
5. What is the highest score possible for three darts?

Similar Figures

Similar polygons and figures have the same shape, but not necessarily the same size. We use the symbol \sim to tell that two shapes are similar.

Triangle $A B C$ is similar to triangle XYZ . We write: $\triangle \mathrm{ABC} \sim \triangle \mathrm{XYZ}$

Figure A is similar to figure B.
(1) Use the dots below to help you draw a figure that is similar to the one drawn. Also, draw a figure that is congruent to the figure shown.

Forizons

66600
 6666666666000 uh6666

 6666666 gand 66666666
 $660<1$ 566666660 $66666666 t$ 66666666 66666666 666666666

Numeration - Trillions

Genesis 1:14-19 And God said, "Let there be lights in the expanse of the sky to separate the day from the night, and let them serve as signs to mark seasons and days and years, and let there be lights in the expanse of the sky to give light on the earth." And it was so. God made two great lights, the greater light to govern the day and the lesser light to govern the night. He also made the stars. God set them in the expanse of the sky to give light on the earth, to govern the day and the night, and to separate light from darkness. And God saw that it was good. And there was evening, and there was morning the fourth day."

God took great care in creating our world. The massive size of our Solar System gives evidence of the omnipotence of our Heavenly Father. Scientists today measure the distance between planets in Astronomical Units (AU). An AU is the mean distance between the earth and the sun. One Astronomical Unit (AU) is about $92,960,000$ miles ($149,604,970 \mathrm{Km}$). Look at the chart below. This chart lists the distances from each planet to the Sun in both Astronomical Units (AU) and miles. Can you read each number correctly?
Planet
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
rf Planet Pluto

$\underline{\text { AU }}$	Miles
0.39	$36,254,400$
0.72	$66,931,200$
1	$92,960,000$
1.52	$141,299,200$
5.20	$483,392,000$
9.54	$886,838,400$
19.18	$1,782,972,800$
30.06	$2,794,377,600$
39.44	$3,666,342,400$

The number can be written in three different ways.
Standard Form: 3,666,342,400
Written Form: Three billion, six hundred sixty-six million, three hundred forty-two thousand, four hundred
Expanded Form: 3,000,000,000 + 600,000,000 + 60,000,000 + 6,000,000 + 300,000 + OR $40,000+2,000+400$
Expanded Form: $(3 \times 1,000,000,000)+(6 \times 100,000,000)+(6 \times 10,000,000)+$ $(6 \times 1,000,000)+(3 \times 100,000)+(4 \times 10,000)+(2 \times 1,000)+$ (4×100)

$$
\begin{array}{llll}
x \div 5=7 & x \div 9=9 & x \div 10=10 & x \div 13=3 \\
& \\
\frac{x}{7}=7 & \frac{x}{9}=8 & \frac{x}{9}=7 & \frac{x}{8}=6
\end{array}
$$

(2) Find the difference.

569,241
$-531,955$
---:

3 Find the sum.

90 9, 270
978,822
586,702
656,342
$\begin{array}{r}+400,969 \\ \hline\end{array}$

$+568,097$

4 Write the measurement.

The straw is \qquad inches long.

The candy is \qquad inches long.
(2) Change each mixed fraction to an improper fraction.
$8 \frac{1}{5}=$ \qquad $8 \frac{2}{9}=$
$3 \frac{7}{8}=$ \qquad
$16 \frac{4}{7}=$
$15 \frac{1}{2}=$
$17 \frac{1}{3}=$
$11 \frac{1}{6}=$
$12 \frac{3}{4}=$
$\underline{\square}$
(3) Find your way through the maze by finding the next greatest number.

(4) Use the chart to solve the following problems.

14 feet $=\ldots$	inches
4 miles $=\ldots$	feet
27 feet $=\ldots$ yards	
18 yards $=\ldots$	feet

Division

Many times you can look at a division problem and tell if an answer is too high or too low by using your knowledge of division and multiplication to estimate the answer in your head. Look at the example below.

Karen and Doug were moving from Georgia to Alaska. The trip would cover 5,000 miles by automobile. If they allowed 14 days to drive, how many miles per day would they need to travel in order to complete the trip in that amount of time?
Problem A

$$
\begin{array}{r}
500 \\
1 4 \longdiv { 5 , 0 0 0 }
\end{array}
$$

Problem B
200
$1 4 \longdiv { 5 , 0 0 0 }$

Is the first answer shown too high of an estimate, or is the estimate too low? Think logically and use your knowledge of multiplication. If 14 rounds down to 10 , then 10×500 would be 5,000 . However, Doug and Karen have allowed 14 days. This means that the estimate in problem A of 500 miles per day is too large. What about the estimate in problem B ? What is 14×200 ? $14 \times 2=28$, so $14 \times 200=2,800$. This estimate is too low. The correct answer must be somewhere between 200 and 500. Work the problem to find the actual number of miles they will need to travel each day.

$$
1 4 \longdiv { 5 5 , 0 0 0 }
$$

This means that Doug and Karen will need to drive at least 357 miles per day in order to reach Alaska in 14 days.

(1) Tell if the estimated answer is too high or too low. Then find the quotient.
$1 1 \longdiv { 2 0 0 }$
500
4,596
$2 3 \longdiv { 2 , 1 1 1 }$
$5 \begin{array}{r}400 \\ 829\end{array}$

Classifying and Measuring Angles

An angle is two rays that share a common end point.
The rays $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are called sides. They meet at vertex B to form an angle. The angle can be referred to as $\angle A B C, \angle B$, or $\angle C B A$.

There are four kinds of angles:

An acute angle. Less than 90°.

An obtuse angle. Greater than 90°.

A right angle.

A protractor is an instrument used to measure angles.
The angles are measured in degrees. The protractor is marked with 180 degree (180°) units.

What is the measure of $\angle \mathrm{LMN}$?

Follow these simple steps to measure an angle with a protractor:

1. Place the arrow on the protractor on the vertex of the angle.
2. Place the zero edge on the side of the angle.
3. Read the measure of the angle.
$\angle \mathrm{LMN}$ measures 30°

1 Write obtuse, acute or right angle.

1. 30°
2. 118°
3. 90°
4. 27°

Give the measure of each angle. You may need to extend the sides of the angle for easier reading.
1.

2.

(4) Find the missing number.
8.75 - \qquad $=6.36$
13.30 - \qquad $=5.31$
10.871 - \qquad $=9.682$
139.060 - \qquad $=97.138$
2,108.6 - \qquad $=1,039.9$
5,362.51 - \qquad $=480.46$
(5) Draw similar figures to the ones given.

Multiplying Fractions

Michael had $\frac{1}{2}$ a cake to share among his friends. They ate $\frac{1}{2}$ of the remaining cake. What part of the whole cake did Michael and his friends eat?

They ate $\frac{1}{4}$ of the entire cake.
We want to find $\frac{1}{2}$ of $\frac{1}{2}$, so we multiply.
STEP 1: STEP 2:
Multiply the numerators.
Multiply the denominators.
$\frac{1}{2} \times \frac{1}{2}=\frac{1}{?}$
$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
(1) Multiply. Reduce to the lowest terms.
$\frac{7}{8} \times \frac{1}{8}=$
$\frac{4}{5} \times \frac{1}{2}=$
$\frac{1}{9} \times \frac{2}{5}=$
$\frac{3}{7} \times \frac{1}{4}=$
$\frac{4}{6} \times \frac{1}{3}=$
$\frac{1}{3} \times \frac{4}{12}=$
$\frac{7}{15} \times \frac{1}{2}=$
$\frac{3}{8} \times \frac{9}{10}=$

Solve.
The Bearley's need 1,290 tiles to cover a floor and a splash area. The tiles are sold in boxes of 25 tiles each. How many boxes should they buy?

Coach Brian needs has 229 players in his T-Ball league. Each player is to be given a Loganville T-Ball League patch. If the patches come in packages of 15, how may packages does Coach Brian need to buy?

Latrobe First Baptist needs to mail 8 boxes of supplies to their missionaries in Africa. If the church has $\$ 425$ to spend on shipping, and each box will cost approximately $\$ 65$, how many of the 8 boxes can they ship with $\$ 425$?

Each cabin at Youth Camp houses 12 students. If there are 69 girls going to camp and 43 boys going to camp, how many cabins will be needed for all the students? (Remember, girls and boys cannot share a cabin).

3 Find the quotient.
$0 . 5 \longdiv { 3 . 2 0 }$
$. 8 2 \longdiv { 2 . 9 5 2 }$
$6 2 . 5 \longdiv { 4 . 3 1 2 5 }$
$3 . 8 \longdiv { 2 . 1 2 8 0 }$
(4) Convert the following numbers from base 2 into base 10.

2^{4}	2^{3}	2^{2}	2^{1}	$2^{0}=1$
1	1	0	1	$1=$
	1	1	1	$1=$
	1	0	0	$1=$
1	0	1	1	$0=$
1	1	1	1	$1=$

(5) Count the change. Use the fewest coins and bills possible. Write the total amount due.

Price	Paid	Change Due
Example: $\$ 1.55$	$\$ 5.00$	3 dollars, 2 dimes, 1 quarter $=\$ 3.45$
$\$ 3.14$	$\$ 5.00$	
$\$ 8.29$	$\$ 10.00$	
$\$ 12.30$	$\$ 15.00$	
$\$ 38.75$	$\$ 40.00$	
$\$ 12.19$	$\$ 20.00$	

6) Label each time zone. Draw the correct time on the clock face in each time zone.

Multiply a Fraction by a Whole Number

Clara collected data about the 15 children in her preschool class. She discovered that $\frac{3}{5}$ of the children have a pet at home. How many children in the class have a pet?

To find the fraction of a number we multiply:
What is $\frac{3}{5}$ of $15 ?$
OR
$\frac{3}{5}$ of $15=$

When you see the word "of" in a mathematical equation, it means to multiply.
Rewrite the equation and substitute a multiplication sign where the word "of" is written.

$$
\begin{equation*}
\frac{3}{5} \text { of } 15=9 \tag{OR}
\end{equation*}
$$

$\frac{3}{5} \times \frac{15}{1}=\frac{45}{5}=9$

9 of the students in Clara's class have pets.

Clara also discovered $\frac{1}{3}$ of the students with pets have cats as pets.
How many students have cats?

$$
\frac{1}{3} \text { of } 9=3
$$

OR

$$
\frac{1}{3} \times \frac{9}{1}=3
$$

(1) Find the fraction of each number. Draw pictures if necessary.
$\frac{1}{2}$ of 16
$\frac{1}{4}$ of 12
$\frac{1}{4}$ of 20
$\frac{2}{3}$ of 9
$\frac{1}{10}$ of 50
of 24
(2) Multiply. Rename to lowest terms.
$\frac{23}{25} \times \frac{2}{10}=$
$\frac{9}{18} \times \frac{4}{8}=$
$\frac{7}{20} \times \frac{5}{8}=$

$\frac{56}{90} \times \frac{45}{50}=$
$\frac{6}{8} \times \frac{2}{3}=$
$\frac{15}{16} \times \frac{4}{3}=$

(3) Solve.

The caterer made 250 mini quiches for the preschool brunch. If each person will eat 3 quiches, how many people will be fed?

A giant watermelon, weighing 30 pounds was cut into 20 equal slices. How much did each slice weigh?

How many boards 48 inches long can be cut from a board 168 inches long?

In your monthly budget you have allowed $\$ 175$ for gasoline. If it takes approximately $\$ 21$ to fill up your tank, how many times can you fill up in a month?

4 Divide.
$2.095 \div 5=$
$18.78 \div 6=$
$17.334 \div .54=$
$28.35 \div 5=$
$482.4 \div 4.02=$
$.0072 \div 8=$
$.658 \div 7=$
$9.54 \div 6=$

5 Convert each base 10 number to its base 2 equivalent.
$56=$
$63=$
$9=$
$23=$

6 Round each number to the nearest hundredth in order to find your path through the maze.
$10.239=$ \qquad
$56.982=$ \qquad $0.367=$ \qquad
$0.085=$ \qquad
$42.006=$ \qquad $19.732=$ \qquad

Righteousness

7 Write the amount of change due from each transaction. Use the fewest coins and bills possible.

Eileen purchased a set of tires for her car at a cost of $\$ 397.65$. If she gave the cashier $\$ 500.00$, how much change is she due?

Mr. Tomko used $\$ 295.00$ to purchase a miter saw and $\$ 58.95$ to purchase a new drill. How much change will he receive if he gives the cashier four one hundred dollar bills?

Kathy purchased a CD player. She paid the cashier with a $\$ 100.00$ dollar bill. If she received a ten dollar bill and a quarter in change, how much did the CD player cost?

Mrs. Ross spent $\$ 146.25$ at the grocery store. She then spent $\$ 35.65$ at the grocery store's pharmacy. If she left the house with 3 one hundred dollar bills, how much cash does she now have? List what bills she has in her wallet if the cashier gave her the correct change.

Horizons

Pre-Algebra Student Book

$$
p(n, r)=\frac{n!}{(n-r)!}
$$

(4) Find the greatest common factor of each set of numbers.
18,24 , and 36
14,35 , and 42
20,32 , and 36
(5) Simplify.

$43.2 \times 10^{0}=$	$0.063 \times 10^{0}=$	$2.7 \div 10^{0}=$
$0.871 \times 10^{-1}=$	$27.96 \times 10^{1}=$	$66.49 \div 10^{1}=$
$6.492 \times 10^{-2}=$	$3.18 \div 10^{2}=$	$31.45 \div 10^{2}=$
$0.5 \times 10^{-3}=$	$549.618 \div 10^{3}=$	$0.088 \div 10^{3}=$

6) Solve the word problems. Remember to label your answers.

Recipe for Buttermilk Biscuits (Makes 4 dozen biscuits)

8 cups flour	8 tablespoons butter
5 teaspoons baking powder	8 tablespoons shortening
1 teaspoon baking soda	4 cups buttermilk, chilled
1 tablespoon salt	

Diann is cooking for 192 people at church on Wednesday night. How much of each ingredient does Diann need to serve one biscuit to each person?

A 5-pound bag of flour contains about 20 cups of flour. How many 5-pound bags of flour must Diann purchase to ensure she has enough flour to bake biscuits for 192 people?

1. The aerial bucket ride at an amusement park allows a maximum of 8 park guests to exit or board at each stop. The chart below shows how many guests boarded and exited the bucket ride in each of the first 5 stops. If there were 38 guests on the ride at the start, how many were on the ride after the 5th stop?

Stop	A	B	C	D	E
Boarded	6	4	7	8	8
Exited	2	8	5	4	3

A. 10
B. 16
C. 34
D. 38
E. 49
2. Given $x+3=7$ and $y+12=20$, what is the value of $x+y$?
A. 4
B. 8
C. 12
D. 32
E. 42
3. In a football game, a touchdown with an extra point is worth a total of 7 points. A field goal is worth 3 points. If a team has 23 points, how many field goals have they scored? (Assume all extra points were made and no safeties or 2-point conversions were scored.)
A. 1
B. 2
C. 3
D. 4
E. 5
4. Given x is the square of an integer and a multiple of 9 and 18 , find the value of x.
A. 3
B. 6
C. 9
D. 18
E. 36

A rectangle is a parallelogram with four congruent angles. Because a rectangle is a parallelogram, the formulas for perimeter and area remain the same.

A square is a rectangle with four congruent sides. Because a square has four congruent angles and four congruent sides, the formulas for perimeter and area can be simplified as follows:
$P=4 s$, where s is the length of a side
$A=s^{2}$, where s is the length of a side
List everything you know to be true about the diagram below. Find the perimeter and area.

Given: $\square D C B A ; D C=7 ; C B=4$
What you know:
It is a parallelogram. It is rectangle.
$\overline{\mathrm{AB}}\|\overline{\mathrm{DC}}, \overline{\mathrm{AD}}\| \overline{\mathrm{BC}}, \overline{A B} \cong \overline{D C}, \overline{A D} \cong \overline{B C}$
Each of the angles is equal to $360^{\circ} \div 4=90^{\circ}$. Perimeter is $2(7)+2(4)=14+8=22$ units. The area is $7(4)=28$ square units.

(1) CLASSWORK

List everything you know to be true about the diagram below. Include the perimeter and area.

Given: $\square D C B A ; D C=5 ; C B=5$

ACTIVITIES

2 List everything you know to be true about the diagrams below. Include the perimeter and area.

Given: ${ }^{\square} W X Y Z ; W X=4 \frac{1}{2}$

1. In the figure above, A is the center of the large circle and C is the center of the small circle. If $C D=3$, what is the length of $\overline{E B}$?
A. 6
B. 9
C. 12
D. 15
E. 18

2. What is the area of the figure above?
A. 20
B. 22
C. 23
D. 24
E. 25

What is your occupation? I am a registered nurse and missionary wife.

Where do you work? I work in Soroti, Uganda. I am the mother of three. I am also the nurse for 30 orphans at the Soroti Orphan Assistance project (S.O.A.P) orphanage.

Did you attend college? If so, what was your major? Yes, I have a B.S. degree in nursing.

What parts of your job require the use of
 math? The recipes that I use have the oven temperatures in degrees Fahrenheit while the ovens I use are in Celsius. I need to convert the oven temperatures from Fahrenheit to Celsius. I also use math to calculate the medication dosages for children.

What is the biggest "problem" you have faced that required the use of math to solve? When a child needs medicine, I need to convert the dosages of the medication for that specific child.

Are there any other interesting math uses you have experienced? I

 use math to determine how much flour, sugar, etc. I need to buy to make various recipes. I also need to keep within a grocery shopping budget. This is difficult because I don't know the value of the dollar until I arrive in the capital city. When I get there, I buy groceries for the next two months. I need to determine how many kilos of ground beef I will need for two months of dinners.

A function is an equation in which each value of the independent variable has exactly one corresponding value of the dependent variable.

The values assigned to the independent variable are called the domain.

The corresponding values of the dependent variable are called the range.

A function is written in the format $f(x)$ and is read, "the function f of x," or, "the f of x."

When graphing a function, the $f(x)$ side of the equation corresponds to the y portion of an equation. Plot points as usual and graph.

To look at a graph and instantly determine whether or not the graph is a function, use the vertical line test. If you can draw a vertical line on the graph and cross the graph in two or more points, the graph is not a function. Otherwise, the graph is a function.

Tell whether or not each graph is a function.

Yes. There is no way to draw a vertical line that intersects the graph in more than one point.

No. Notice that the blue vertical line intersects the graph in two places.

(1) CLASSWORK

Tell whether or not each graph is a function.

Graph the function $f(x)=2 x-1$.

ACTIVITTES

Find the area of each base, and the volume of a prism having the indicated height.

Base of Prism	Area of Base	Prism Height	Volume of Prism
		$3 \frac{3}{5} \mathrm{in}$.	
		2.1 cm	
		$4 \sqrt{3} \mathrm{ft}$.	
		7.03 m	
		$5 \sqrt{2} \mathrm{yd}$	

2 Complete the chart for cones.

Radius	Height	Slant Height	Volume	Lateral Area	Surface Area
$5.2 \mathrm{in}$.	1.8 in.	1.8 in.			
6 m	8 m	10 m			

Horizons

Algebra

 Student Book$|7 x-40|-42>-19$
$5 \div \sqrt{5}=$
$=\square$

Introduction to... Exploring Math through...

Often students ask:

Who uses this stuff anyway?

I will NEVER be a math major. Why do I have to learn all this?

Math is a school subject that is used daily by people in their work, homes, and play. Many people use math in their jobs, even if those jobs do not require a college degree in mathematics. There is a good chance you will use math on an algebra level when you get a job. Math is also an integral part of recreation. Almost every sport or hobby uses math in some way.

While you may find some of the topics in algebra challenging, they will help you learn more about math and God's carefully designed world. You do not know what plans God has for your life. You may be surprised in the directions God leads you and find that you use math in ways you never expected.

Throughout this book, you will read about several sports and hobbies that require the use of math. Whether or not God's plan for your life includes college, math will play a role in your future.
"For I know the plans I have for you," declares the LORD, "plans to prosper you and not to harm you, plans to give you hope and a future."

Natural numbers are counting numbers.
(1, 2, 3, ..)
Whole numbers are the natural numbers and zero. (0, 1, 2, . . .)

Integers are the positive and negative whole numbers. (-1, 0, 1, . . .)

Signed Number Rules:

When adding two numbers with the same sign, add the numbers like normal, and keep the same sign in the answer.
$(+2)+(+5)=(+7)$ and $(-2)+(-5)=(-7)$
When adding two numbers with opposite signs, ignore the signs (use the absolute values) and subtract the smaller number from the larger number. Keep the sign of the larger number as the sign in the answer.
$(+5)+(-2)=(5-2)=3.5$ is larger than 2 and 5 is positive in the problem, so the answer is positive.
$(+5)+(-2)=(+3)$.
$(-5)+(+2)=-(5-2)=3.5$ is larger than 2 and 5 is negative in the problem, so the answer is negative.
$(-5)+(+2)=(-3)$
When subtracting signed numbers, change the sign of the second number and add.
$(+5)-(-2)=(+5)+(+2)=5+2=7$
When multiplying two numbers with the same sign, the answer is ALWAYS positive.
$(+5) \times(+4)=20 \quad(-5) \times(-4)=20$
When multiplying two numbers with different signs, the answer is ALWAYS negative.
$(+5) \times(-4)=-20 \quad(-5) \times(+4)=-20$
When multiplying more than two numbers, count the number of negatives. If there is an even number of negative terms, the answer is positive. If there is an odd number of negative terms, the answer is negative.
When dividing signed numbers, follow the rules of multiplying signed numbers.

Rational numbers are numbers that can be written as a fraction. $\left(\frac{1}{2}, \frac{4}{3}, \frac{7}{1}, 10.5\right)$

Irrational numbers are numbers that CANNOT be written as a fraction. $(\sqrt{2}, \pi)$
Real numbers are numbers in any of the above categories.

(1) CLASSWORK

Identify each number as natural, whole, integer, rational, irrational, or real. Some numbers may have more than one answer.

	7	-4	$\sqrt{2}$	0	$1 \frac{1}{4}$	$\frac{1}{6}$	π	5.3
Natural								
Whole								
Integer								
Rational								
Irrational								
Real								

Solve, using the rules for signed numbers.

$$
\begin{aligned}
& (+42)+(+61)= \\
& (+42)+(-61)= \\
& (+42)-(-61)= \\
& (-42)-(-61)= \\
& (-3)(-4)= \\
& (-3)(4)= \\
& (-3)(4)(2)= \\
& (-3)(-4)(2)= \\
& (+12) \div(-3)= \\
& (-12) \div(-3)=
\end{aligned}
$$

(3) Solve, following the rules of signed numbers.

$(+57)+(+73)=$	$(-3)(7)(2)=$
$(+57)+(-73)=$	$(8)(-7)(1)=$
$(-57)+(+73)=$	$(-9)(-7)(-1)=$
$(-57)+(-73)=$	$(-7)(8)(2)=$
$(+242)-(+397)=$	$(-4)(-9)(3)=$
$(+242)+(-397)=$	$(-11)(2)(-4)=$
$(-242)+(+397)=$	$(-9)(-4)(-3)=$
$(-242)-(-397)=$	

(4) Solve.

The Passer Rating of a college football quarterback is calculated using the formula NCAA QB Passer Rating $=[(8.4 y)+(330 t)-(200 i)+(100 c)] \div a$, where y is the number of passing yards, t is the number of touchdowns thrown, i is the number of interceptions thrown, c is the number of completed passes, and a is the number of pass attempts.

Calculate the passer rating of a quarterback that had 220 passing yards, 1 touchdown thrown, no interceptions, 13 completed passes, and 17 pass attempts in his last game. Round answer to the nearest hundredth.

ACTIVITIES

2 Find the prime numbers in the list below by following the directions.

1. Cross out the number 1.
2. Circle the number 2. Cross out every other number after two (the multiples of 2).
3. Circle the number 3. Cross out every third number after three (the multiples of 3).
4. Circle the number 5. Cross out every fifth number after five (the multiples of 5).
5. Circle the number 7. Cross out every seventh number after seven (the multiples of 7).
6. Circle all remaining numbers. The circled numbers are the prime numbers less than 100.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Write the prime numbers less than 100.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad , \qquad
\qquad
\qquad
\qquad , \qquad
—— ——' \longrightarrow \qquad — \qquad - \qquad
\qquad
\qquad
\qquad ,
(3) Find the prime factorization of each number. Use exponents where appropriate.
12
14
15
20

21
22
24
25

4 Find the prime factorization of each number. Use exponents where appropriate.

5 Solve, following proper order of operations.

$$
\begin{aligned}
& 5+12 \div 3= \\
& 27-3 \times 5= \\
& 13-2 \times 4+6= \\
& 4+3^{2}+5= \\
& 12 \div 6 \times 5+3-1 \times 7= \\
& 16 \div 2^{2}+5-3 \times 2= \\
& (11-2) 4 \div 6-5= \\
& (7-3)^{2}-20 \div 4= \\
& (4+3)-2^{2}+6 \times 2= \\
& (11-8)^{3}-5^{2}+7 \times 2= \\
& 3^{3} \div 9+(5+1)-4= \\
& (2 \times 8-(21-16)+1) \div 6= \\
& ((2+4 \times 3) \div 7)^{2}=
\end{aligned}
$$

The opposite of raising a number to an exponent is taking the root of a number. The root is represented by the symbol $\sqrt{ }$, called the radical. The number under the radical is called the radicand (or argument), and the number that indicates the root is called the index and corresponds to the exponent.
For example, $2^{3}=8$. To express this as a root, write $\sqrt[3]{8}=2$, where 8 is the radicand, 3 is the index, and 2 is the root. In this case, 3 is the cube root of 8 .

To find the square root of a number, find a number that, when multiplied by itself, gives the radicand.
For example, $\sqrt{16}=\sqrt{4 \times 4}=4$
For larger numbers, write the radicand as the product of perfect square factors and find the square roots.

$$
\sqrt{128}=\sqrt{8 \times 8 \times 2}=8 \sqrt{2}
$$

To add or subtract roots, the radicands and indexes must be equal. Add the numbers immediately to the left of the radical. If there is no number, treat it as a 1 .
For example, $\sqrt{3}+\sqrt{3}=2 \sqrt{3}$ and $2 \sqrt{5}+4 \sqrt{5}=6 \sqrt{5}$. If the radicands or indexes are not equal, the roots cannot be added or subtracted.

To multiply or divide roots with the same index, multiply or divide the radicands and write the answer under one radical. Multiply or divide the numbers outside the radical and write outside the radical in the answer. Simplify if necessary.
For example, $\sqrt{12} \times \sqrt{3}=\sqrt{12 \times 3}=\sqrt{36}=6$

(1) CLASSWORK

Rewrite the following expressions as roots.
$2^{4}=16$
$3^{2}=9$
$5^{2}=25$
$5^{3}=125$
$6^{3}=216$

Solve the following roots.
$\sqrt{16}=$
$\sqrt[3]{27}=$
$\sqrt{32}=$
$\sqrt[3]{16}=$
$\sqrt{2}+\sqrt{2}=$
$\sqrt{5}+2 \sqrt{5}=$
$\sqrt[3]{10}+5 \sqrt[3]{10}=$
$6 \sqrt{7}-4 \sqrt{7}=$
$5 \sqrt[3]{5}-4 \sqrt[3]{5}=$
$(\sqrt{10})(\sqrt{2})=$
$(3 \sqrt{5})(2 \sqrt{2})=$
$\sqrt{27} \div \sqrt{3}=$
$10 \sqrt[3]{16} \div 5 \sqrt[3]{4}=$
$3 \div \sqrt{3}=$

ACTIVITIES

2 Rewrite the following expressions as roots.

$2^{6}=64$	$8^{2}=64$
$5^{2}=25$	$3^{4}=81$
$4^{3}=64$	$7^{2}=49$

A polynomial is an algebraic expression. If that expression contains two or more terms, the terms must be separated by a plus or minus sign. All variables must have a positive integer as an exponent, and no variable may appear in a denominator.

A constant is a term that has a number but no variable.

A coefficient is a number that is multiplied by a variable.

A monomial is an expression containing one term, such as $x^{2}, 3 x$, or 5 . A constant is a monomial.

A binomial is a polynomial containing two terms, such as $3 x+5$ or $x^{2}-4 x$.

A trinomial is a polynomial containing three terms, such as $x^{2}-4 x+3$.

Identify whether or not each expression is a polynomial. For each polynomial, identify it as a constant, monomial, binomial, or trinomial.
$x^{2}+2 x-1$
This is a polynomial and a trinomial.
$4 x^{-2}-3 x+7$
This is not a polynomial because there is a -2 as an exponent.

(1) CLASSWORK

Identify whether or not each expression is a polynomial. For each polynomial, identify it as a constant, monomial, binomial, or trinomial.
$6 x-4$

17
$4 x^{2}+\frac{5}{x}-3$
$3 x^{-2}-5$
$3 x^{2}-4 x+2$

ACTIVITIES

2 Identify whether or not each expression is a polynomial. For each polynomial, identify it as a constant, monomial, binomial, or trinomial.
$9 x-4$
$7 x^{2}+\frac{3}{x}-4$
$8 x^{-2}+9$

31
$10 x^{2}-13 x+6$
$-3 x$

The Distributive Property allows another method of working with parenthetical expressions that are multiplied by a single factor.

In some cases, it is easier to multiply each term in the parentheses by the factor outside the parentheses and then simplify.
$2(15+13)=2(15)+2(13)=30+26=56$ rather than $2(15+13)=2(28)=56$

Something to Think About...

Two parentheses next to each other with no symbol between them means multiply.
$(5)(4)=20$
$(-5)(4)=-20$

Commutative Property of Multiplication: You can change the order of the terms and still get the same product.
$2 \times 3=6$ and $3 \times 2=6$

(1) CLASSWORK

Simplify the expressions, using the distributive property.
$4(10+9)=$
$5(12+7)=$
$9(20-3)=$

Associative Property of Multiplication:

You can group the terms in different ways and still get the same product.
$2 \times(3 \times 4)=2 \times 12=24$ and
$(2 \times 3) \times 4=6 \times 4=24$

Identity Property of Multiplication:

You can multiply any number by one and the product is always the number. $0 \times 4=0$ and $4 \times 0=0$

ACTIVITIES

(2) Use the distributive property to simplify each expression.
$2(35+7)=$
$4(9+5)=$
$7(1+40)=$
$7(30+9)=$
$8(20+9)=$
$4(25+9+15)=$
(3) Solve the following roots.

$$
\begin{aligned}
& \sqrt[3]{375}-2 \sqrt[3]{24}= \\
& (\sqrt{10})(\sqrt{5})= \\
& (4 \sqrt{5})(3 \sqrt{15})= \\
& \sqrt{27} \div 3= \\
& 12 \sqrt[3]{54} \div 3 \sqrt[3]{2}=
\end{aligned}
$$

(1) $P=$ the set of positive integer factors of 16
$Q=$ the set of positive integer factors of 20
$R=$ the set of positive integer factors of 24
P, Q, and R represent three sets of numbers, as defined above. Which set of numbers below belongs to all three sets?
A. $\{1,2,4\}$
B. $\{1,2,3,4\}$
C. $\{1,2,4,16\}$
D. $\{1,2,3,4,16\}$
E. $\{1,2,3,4,16,24\}$
(2) Given $4(e-f)-5=3$, what is the value of $e-f$?
A. $-\frac{1}{2}$
B. 2
C. 4
D. 8
E. 32
(3) Given $(3+a)(7-b)=0$ and a is a natural number, what is the value of b ?
A. -7
B. -3
C. 0
D. 3
E. 7
(4) If $13^{7} \times 13^{x}=13^{21}$, what is the value of x ?
A. 3
B. 7
C. 14
D. 21
E. 147

Enhance Your Homeschool with Horizons

> Now that you've had a chance to experience Horizons, visit us anytime at www.aop.com to add the handy worktexts to your curriculum collection.

To speak with a friendly curriculum advisor, call 800-622-3070. Our regular business hours are Monday through Thursday from 7 a.m. to 6 p.m. (CT) and Friday from 7 a.m. to 5 p.m. (CT).

